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The main result of this work is extension of the famous characterization of

Bravais lattices according to their metrical, algebraic and geometric properties

onto a wide class of primitive lattices (including Buerger-reduced, nearly

Buerger-reduced and a substantial part of Delaunay-reduced) related to low-

restricted semi-reduced descriptions (s.r.d.’s). While the ‘geometric’ operations

in Bravais lattices map the basis vectors into themselves, the ‘arithmetic’

operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face

or space diagonals) and are represented by matrices from the set V of all 960

matrices with the determinant �1 and elements {0, �1} of the matrix powers. A

lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors

M and M�1 are smaller than corresponding diagonal elements sharing the

same column or row. Such lattices are split into 379 s.r.d. types relative to the

arithmetic holohedries. Metrical criteria for each type do not need to be

explicitly given but may be modelled as linear derivatives Mðp; q; rÞ, where M

denotes the set of 39 highest-symmetry metric tensors, and p; q; r describe

changes of appropriate interplanar distances. A sole filtering of V according to

an experimental s.r.d. metric and subsequent geometric interpretation of the

filtered matrices lead to mathematically stable and rich information on the

Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis

on the crystallographic features of lattices was obtained by shifting the focus (i)

from analysis of a lattice metric to analysis of symmetry matrices [Himes &

Mighell (1987). Acta Cryst. A43, 375–384], (ii) from the isometric approach and

invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl.

Cryst. (1982), 15, 255–259]} and splitting indices [Stróż (2011). Acta Cryst. A67,

421–429] and (iii) from fixed cell transformations to transformations derivable

via geometric information (Himes & Mighell, 1987; Le Page, 1982). It is

illustrated that corresponding arithmetic and geometric holohedries share space

distribution of symmetry elements. Moreover, completeness of the s.r.d. types

reveals their combinatorial structure and simplifies the crystallographic

description of structural phase transitions, especially those observed with the

use of powder diffraction. The research proves that there are excellent

theoretical and practical reasons for looking at crystal lattice symmetry from an

entirely new and surprising point of view – the combinatorial set V of matrices,

their semi-reduced lattice context and their geometric properties.

1. Introduction

The work of Bravais (1850) – splitting the infinite set of three-

dimensional lattices into 14 types and deriving for each type a

primitive or centred translational cell, the symmetry of which

is established by unique relationships between cell dimensions

(a; b; c, �, �, �) and is always the same as the symmetry of a

given lattice – had a fundamental effect on the whole of

geometric and practical crystallography, for example lattice

classification, crystal structure standard description and

analysis of structural crystal transitions. Two from three widely

accepted levels of lattice classifications (de Wolff et al., 1989)

directly involve symmetry. The seven crystal systems are based

on the conjugacy properties of the geometric lattice groups
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within the orthogonal group O(3). Classification into 14

Bravais types, on the other hand, is based on the conjugacy

properties of the arithmetic lattice groups within the group

GL(3, Z) constituted by invertible 3� 3 matrices with integer

entries. The narrowest classes are defined by the reduced

lattices (Minkowski, 1905; Niggli, 1928; Delaunay, 1933;

Buerger, 1957) via metrical relationships. Each lattice in such a

class shares the same arithmetic holohedry related to the

Bravais lattices by the predefined transformations. The

reduction formalism has rich algorithmic and mathematical

support and leads to some generalizations [e.g. 127 genera

obtained by Gruber (2006)]. However, in the presence of

experimental errors it also suffers from mathematical

instabilities (Andrews et al., 1980). Several techniques were

proposed to obtain higher perturbation stability (Andrews et

al., 1980; Grosse-Kunstleve et al., 2004; Andrews & Bernstein,

1988, 2014; McGill et al., 2014; Oishi-Tomiyasu, 2012). It

should be noted that: (i) improvements in the metric approach

lead to quite sophisticated algorithms, (ii) the concept of

nearly Buerger-reduced lattices is useful for stability consid-

eration, (iii) explicit criteria for ‘lattice characters’ or

‘symmetrische sorten’ are valid for wider classes of lattices than

accordingly reduced.

The dilemma of metric classification in the presence of

experimental errors is unimportant if the arithmetic symmetry

is determined, since primitive-to-Bravais transformations can

be derived from a geometric interpretation of integer matrices.

Le Page (1982) proposed searching lattice orthogonalities for

arithmetic holohedry derivation. His geometric approach, so

simple and stable, was incorporated in several computer

programs for finding lattice symmetry (e.g. Cooper et al.,

2002). The method was originally used for Niggli-reduced

cells, but is valid for an undefined wider class of lattices. In the

matrix approach based on matrices which relate any primitive

cell of the lattice to itself (Santoro et al., 1980; Mighell et al.,

1981; Himes & Mighell, 1987; Karen & Mighell, 1989) the

reduction step is completely omitted, but in the case of highly

skewed cells a huge number of potential lattice relations

should be tested, which creates the possibility of missed

symmetries.

It has also been noted by several authors that for

detailed analysis and ‘keeping track of the symmetry

changes in the lattices when their bases are deformed’

(Pitteri & Zanzotto, 1998 and references contained therein)

a non-standard description of metric symmetry by arithmetic

holohedries is preferable over the geometric holohedries

related to Bravais lattices. However, a matrix in the

arithmetic holohedries is not an arbitrary invertible matrix

and generally it is also not orthogonal (Kopský, 2001).

Moreover, such a matrix is understood as an isometric

operation only with the known lattice context (Hahn,

2006; Wondratschek, 1994), similar to its geometric meaning

[‘One must know the reference coordinate system . . . Without

this knowledge a geometric evaluation is impossible’

(Wondratschek, 1994)]. For a wider functionality the

concept of crystallographic symmetry matrix should be clar-

ified.

The above remarks, and the fact that set V of 960 matrices

with the determinant �1 and the elements of matrix powers

{0, �1} covers arithmetic holohedries of Niggli-reduced cells

(Lebedev et al., 2006; Zwart et al., 2006) as well as all Buerger-

reduced highest-symmetry cells and their reciprocals (Stróż,

2011), suggest the possibility of constructing a finite, well

defined arithmetic counterpart of Bravais lattices. Lattices

related to less restrictive semi-reduced descriptions (s.r.d.

lattices) or equivalently lattices with arithmetic holohedries

describable in V should be more appropriate for symmetry

analysis of primitive cells than strictly reduced lattices, since

small deformations (phase transitions, experimental errors) do

not need to be followed by discontinuous changes of lattice

parameters.1

Having defined V, the complete set of possible symmetry

operations, its filtering according to an experimental s.r.d.

metric should reveal all pseudo-symmetries. Ranking of the

symmetry operations and in consequence ranking of the

lattice types can be based on differences between the original

and transformed lattice tensors (Macı́ček & Yordanov, 1992).

However, these differences recalculated into cell deformations

are better controlled by the precision of lattice measurement.

Individual deformations can be used for estimation of the

distance between the considered lattice and a lattice with strict

symmetry [see extensive analysis of this problem in Andrews

& Bernstein (2014) for Bravais symmetry determination and

McGill et al. (2014) for database search].

2. Semi-reduction concept

If A = [a, b, c] defines a three-dimensional primitive lattice,

then any A0 ¼ Ag, where g 2 GL(3, Z) describes the same

lattice. The unique A0 is constructed by lattice reduction

procedures: a2 + b2 + c2 = min or a2 + b2 + c2 + b � c + a � c +

a � b = min and specific conditions, but the presence of

experimental errors causes instability in the final conclusions.2

In the simplified schemas a reduced cell is classified according

to current metric relations, which is equivalent to rejection of

other ‘statistically’ possible solutions. Thus, in the presence of

experimental errors, we have two opposite demands: we must

limit the variety of lattice descriptions like in the error-free

case, but this limitation should not be too restrictive, since it

leads to an artificial uniqueness and to rejection of alternative

descriptions at a very early stage. This concept is well expos-

ited in the statistical tests, where analysed models are

frequently ‘embedded’ in a more general frame with a larger

number of estimated parameters (Mandel, 1969).
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1 All the lattices given by the reduced tensor equation (2, 2, 2, 0, 1, �1) +
p(1, 0, 1, 0, 1, 0) differ only by the distance between planes perpendicular to
the threefold axis, but this feature is difficult to recognize in three different
Niggli-reduced cells, obtained for p = 0, p < 0 and p > 0. Such lattices are semi-
reduced and border problems occurring in biased experimental data are
inessential.
2 For example, cubic primitive cell parameters with small random errors can
mathematically suggest any crystallographic system (excluding a hexagonal
one). Despite this, the cell shape and the lattice pseudo-symmetry will still be
very close to a cube and the cubic system should be selected with some
allowance for errors.



The above demand leads to the introduction of semi-

reduced basis vectors with the following geometric meaning.

We consider one basis vector, say c, and a two-dimensional

lattice described by shortest vectors a and b. The origin O

projected orthogonally on the closest copy of the ab plane falls

in the mesh cell at point O0 in Fig. 1. Lattice points presented

as solid circles, treated as the ends of vectors beginning at the

origin, define four equivalent semi-reduced variants of given

vector c.

Vector OO000 orthogonal to ab can be reached from any

vector c(n) by a linear combination:

OO0 ¼ cðnÞ þ xnaþ ynb: ð1Þ

Generally, there are four vectors c(n), for which |xn| < 1 and |yn|

< 1 are considered here as semi-reduced lattice vectors. If |xn|

= min and |yn| = min or equivalently |xn|, |yn| < 1/2, c(n) is

simultaneously Buerger-reduced; if not it can be Delaunay-

reduced. If |xn| = 1 or |yn| = 1, vector c(n) is not semi-reduced,

but can be Delaunay-reduced. If such a case occurs, there is

also an equivalent Delaunay-reduced description with corre-

sponding |xn| = 0 or |yn| = 0, which is semi-reduced, of course.

The complete criterion can be based on a metric tensor in the

symmetric or in the reduced form:

M ¼

a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

0
B@

1
CA

or ða � a; b � b; c � c; b � c; a � c; a � bÞ ð2Þ

and its reciprocal

M� ¼ M�1: ð3Þ

Criterion 1. A lattice is in s.r.d. if the moduli of off-diagonal

elements in both the tensors M and M �1 are smaller than the

corresponding diagonal elements sharing the same column or

row:

jb � cj< c � c; b � b ja � cj< c � c; a � a ja � bj< b � b; a � a

and simultaneously

jb� � c�j< c� � c�; b� � b� ja� � c�j< c� � c�; a� � a�

ja� � b�j< b� � b�; a� � a�: ð4Þ

Criterion 2. A lattice with symmetry describable in V is

semi-reduced.

It is clear from Fig. 1 that all Buerger-reduced lattices and

most Delaunay-reduced lattices are also in s.r.d. Since the

semi-reduction is treated as a condition rather than as a

reduction procedure, any lattice can be described in the s.r.d.

form by the Buerger reduction procedure, without taking care

of mathematical instabilities or multiple representations of a

given lattice or also by the Delaunay reduction procedure

after replacing some descriptions with equivalent but semi-

reduced forms; for example the tensors (1, 2, 1, �1, 0, 0) and

(1, 1, 1, 0, 0, 0) describe the same lattice, but only the latter one

is in s.r.d. Because of the s.r.d. concept relations between

arithmetic holohedries and lattice metrics are unbounded, not

imposed by reduction criteria.

3. Affine symmetry matrices and their lattice context

A distance-preserving transformation called (linear) isometry

or orthogonal transformation describes a proper or improper

rotation. Without losing generality, in the Euclidean space

represented by a Cartesian coordinate system, it takes the

form of the orthogonal matrix

W �ð Þ ¼ �
cosð�Þ � sinð�Þ 0

sinð�Þ cosð�Þ 0

0 0 1

2
4

3
5: ð5Þ

Determinant det(W) = � [cos(�)2 + sin(�)2] = � 1, and thus

each isometry is reversible. A reversal of W, that is rotation

in the opposite direction, is equivalent to transposition,

since W�1 = W(��) = WT. Another characteristic tr(W) =

det(W)½2 cosð�Þ þ 1� gives the information about the rotation

angle. A composition of two orthogonal matrices results in a

new orthogonal matrix; in consequence all such matrices

constitute an infinite group of orthogonal matrices O(3, R)

with real entries. The group contains only 48 matrices with

integer entries for � = 360/n, n = 1, 2, 3, 4. Since crystal-

lographic restriction also includes n = 6, symmetry of the

hexagonal lattice cannot be described by orthogonal integer

matrices.

In crystallographic coordinate systems imposed by lattice

translation, symmetry matrices are frequently not orthogonal,

but this inconvenience is outweighed by a simpler mathe-

matics (W always contains integers) and closer relation with

the corresponding lattice.

In passive interpretation, W transforms the lattice basis

A0 ¼ AW: ð6Þ

Taking into account the fact that the metric tensor

M ¼ ATA ð7Þ

must be fixed, one can immediately obtain

M ¼ A0TA0 ¼ WTMW: ð8Þ

By inverting (8) and with a little rearrangement we have an

important property:

W�1
¼ M�1WTM ð9Þ
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Figure 1
Four semi-reduced basis vectors c(n) projected onto the upper plane
nearest to the basis plane ab. Projected origin O is marked as O0.



relating inversion and transposition of W. We can call M the

lattice context of W.

The rightmost side of (8) due to (7) can be formally written

as

ða � col1 þ b � col2 þ c � col3Þða � row1 þ b � row2 þ c � row3Þ;

ð10Þ

where vectors coli and rowi symbolize the ith column and the

ith row of W. By signed permutations of basis vectors one can

obtain 48 basis variants (24 right- and 24 left-handed).

Expression (10) is unchanged if such base variations are

followed by signed synchronous permutations of rows and

columns of W. This leads to up to 24 equivalent symmetry

operations (or to the conjugacy class in group theory terms), if

different.

We assign the name crystallographic symmetry matrix to

any integer matrix W with det(W) = �1 and a finite order (in

group theory meaning); it does not matter if the lattice context

is known or not. The matrix represents an isometric trans-

formation in some coordinate system described by M, if M

relates W �1 and transpose WT by similarity equation (9). Such

understanding of the symmetry matrix extends the set of 48

integer orthogonal matrices from a Cartesian system into an

infinite set of matrices, which are also isometric operations, but

in non-Cartesian systems (like the hexagonal one, or primi-

tive). While finite order of W only ‘promises’ that a lattice

exists with W as a symmetry operation, similarity equation (9)

gives the possibility of finding the lattice. It can be noted that

isometric transformations guarantee that any vector, including

basis vectors, preserves its length. Generally, the fact that

lengths of basis vectors before and after the transformation

are unaltered is equivalent to the isometric property, but

there are special lattices where it is not true (in some lattices

several Buerger cells not related by symmetry can be

selected).

A holohedry, a set of operations W which map any lattice

onto itself in the isometric manner, is the finite subgroup of

GL(3; Z). It must contain elements W of finite order k, Wk = I,

where I as usual denotes the identity matrix. The finite number

of matrices can be obtained by limiting its elements, abs(Wij)

	 m, but more interesting is also extending this demand on

Wk. For m = 1 there are 960 matrices organized in set V

covered by the arithmetic holohedries

of 39 highest-symmetry s.r.d. lattices

(Table 1).

It is easy to conclude that all reduced

metric tensors may be obtained from

the four representatives hP1 (2, 2, 1, 0,

0, 1), cP (1, 1, 1, 0, 0, 0), cF1 (2, 2, 2, 1, 1,

1) and cF8 (2, 2, 2, 1, 1, 0) by composing

two combinatorial operations: synchro-

nous cyclic permutations of the diagonal

and off-diagonal elements and multi-

plying any two off-diagonal items by

�1. Finally, the obtained tensors should

be doubled by a mathematical inversion

and recalculated to integers. All tensors in Table 1 are semi-

reduced.

Set V should be understood as some structure in GL(3; Z)

rather than as a set of loosely connected matrices (see the

supporting information). Because of the comment to formula

(10), it contains complete classes of orthogonally conjugated

groups and in consequence orthogonal classes of individual

matrices (maximum 24 long). The statistics of proper rotations

are as follows: 81 (twofolds), 260 (threefolds), 126 (fourfolds),

12 (sixfolds) and of course one (identity operation). Deriva-

tion of a lattice context for any matrix from V is simple; in

similarity equation (9) we are obligated to test only metric

tensors from M. If two symmetry matrices share the same

lattice context (which is the rule for orthogonal matrices),

their composition is also a symmetric matrix, otherwise not –

the resulting matrix has an infinite order, even if it still

represents isometric transformation. In every maximal group

there are symmetry matrices characteristic for that group with

the unique lattice context; other matrices are shared between

two, three, four, five or 11 maximal groups.

4. Lattice orthogonalities

The classical symbol of a point (or space) symmetry operation

(Fisher & Koch, 2006) originates from the linear algebra

rather than from crystallography and describes the point-

invariant subspace. Information on the complement subspace,

invariant as a whole, is lost and the geometric sense of a

symmetry matrix is treated as insignificant if the reference to

the coordinate system is not known (Wondratschek, 1994).

In the crystallographic texts the symmetry of the arrange-

ment of lattice points, and thus the derivation of the Bravais

types, is explained geometrically by stacking identical plane

lattices, relatively shifted one from another by some stacking

vector (McKie & McKie, 1986). The generality will not be lost

if we name the stack of planes by the Miller indices (hkl) and

replace the stacking vector by the corresponding lattice

direction [uvw]. A combined symbol [uvw](hkl) names the

splitting of a three-dimensional lattice into the union of a two-

dimensional lattice and a one-dimensional lattice. The splitting

is orthogonal, if direction [uvw] is perpendicular to the plane

family (hkl). Lattices can contain an infinite number of general

orthogonalities; every direction [uvw] is perpendicular to the
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Table 1
Complete set M of metrical tensors of highest-symmetry lattices referred to as semi-reduced bases.

Metrics cI5–cI16, reciprocal to cF5–cF16, describe non-Buerger cells (Stróż, 2011).

Lattice Metric Lattice Metric Lattice Metric (M6) Lattice Metric

hP1 2,2,1,0,0,�1 hP4 2,2,1,0,0,1 cF7 2,2,2,0,�1,�1 cI7 4,3,3,1,2,2
hP2 2,1,2,0,�1,0 hP5 2,1,2,0,1,0 cF8 2,2,2,1,1,0 cI8 3,3,4,�2,�2,1
hP3 1,2,2,�1,0,0 hP6 1,2,2,1,0,0 cF9 2,2,2,1,0,1 cI9 3,4,3,�2,1,�2
cP 1,1,1,0,0,0 cF10 2,2,2,0,1,1 cI10 4,3,3,1,�2,�2
cF1 2,2,2,1,1,1 cI1 3,3,3,�1,�1,�1 cF11 2,2,2,1,�1,0 cI11 3,3,4,�2,2,�1
cF2 2,2,2,�1,�1,1 cI2 3,3,3,1,1,�1 cF12 2,2,2,1,0,�1 cI12 3,4,3,�2,�1,2
cF3 2,2,2,�1,1,�1 cI3 3,3,3,1,�1,1 cF13 2,2,2,0,1,�1 cI13 4,3,3,�1,�2,2
cF4 2,2,2,1,�1,�1 cI4 3,3,3,�1,1,1 cF14 2,2,2,�1,1,0 cI14 3,3,4,2,�2,�1
cF5 2,2,2,�1,�1,0 cI5 3,3,4,2,2,1 cF15 2,2,2,�1,0,1 cI15 3,4,3,2,�1,�2
cF6 2,2,2,�1,0,�1 cI6 3,4,3,2,1,2 cF16 2,2,2,0,�1,1 cI16 4,3,3,�1,2,�2



planes with the same Miller indices (uvw) in a cubic lattice,

but we are interested in the crystallographic orthogonalities

related to the lattice symmetry. In the following we will use the

term orthogonality in this narrower sense. The limits of the dot

product [uvw]�(hkl) for the odd and even symmetry axes were

proved by Le Page (1982). The equality uh + vk + wl = 1 means

that the lattice is primitive in direction [uvw] and a symmetry

axis consists of the primary symmetry points (Fig. 2) in the

stacking sequence of planes (hkl). If the dot product is equal

to 2, a twofold or a fourfold symmetry axis intersects alter-

nately the family planes (hkl) in primary and secondary

symmetry points. For the dot product equal to 3, possible only

for a threefold symmetry axis, this sequence is ‘primary,

secondary, secondary, primary, secondary, . . . ’.

The number of orthogonalities classifies the crystal-

lographic systems in order of decreasing symmetry: 13 – cubic,

7 – hexagonal, 5 – tetragonal, 4 – trigonal (rhombohedral), 3 –

rhombic, 1 – monoclinic and 0 – triclinic. Orthogonalities in

the reciprocal lattice remain, but with interchanged indices

[hkl](uvw). The task of finding all orthogonalities for lattices

in s.r.d. can be treated as solved. Matrices in V are enumerated

and a new geometric symbol n+� [uvw](hkl) (Stróż, 2011) for a

symmetry matrix explicitly contains the orthogonality

description (see the supporting information). We distin-

guished 208 orthogonalities; some are well known from the

conventional lattice descriptions, 81 concerning twofolds were

earlier enumerated (Zwart et al., 2006).

Some properties of [hkl][uvw] are mathematically obvious;

it specifies two parallel directions, in direct and reciprocal

spaces. The orthogonalities can be roughly grouped by a

parameter

cos2 � ¼
ðuhþ vkþ wlÞ

2

ðuuþ vvþ wwÞðhhþ kkþ llÞ
: ð11Þ

In s.r.d. there are only six different cos2 � values: 1, 2/3, 3/4, 4/5,

9/11, 9/14, and thus six groups of splitting indices.3 But such

formal grouping has little meaning and the equivalence classes

can be obtained by further subdivision of the group ‘1’ and

‘2/3’. These lead to nine types of orthogonalities (Fig. 3).

Two different cases can be easily recognized. In the first

configuration, one basis vector agrees, and the two remaining

are perpendicular to the lattice vector invariant under the

symmetry operation. This situation, presented in the leftmost

pictures of the rows (a) and (b) in Fig. 3, is compatible with all

types of symmetry axes. The lattice is primitive in the axis

direction, since dot product [uvw]�(hkl) = 1.

In the remaining configurations, one, two or even all basis

vectors are inclined to the invariant direction. This corre-

sponds to the centred Bravais cells. The compatibility with the

even-order rotation axis or threefold rotation axis is deter-

mined by the dot product equal to 2 or 3, respectively.

Splitting indices [uvw](hkl) extract the lattice orthogonal-

ities hidden in the metric tensors as well as in the arithmetic

holohedries. The angle between two symmetry axes given by

[u1v1w1](h1k1l1) and [u2v2w2](h2k2l2) can be calculated from

the indices themselves:

cos2 ’ ¼
f½u1v1w1� � ðh2k2l2Þgf½u2v2w2� � ðh1k1l1Þg

f½u1v1w1� � ðh1k1l1Þgf½u2v2w2� � ðh2k2l2Þg
: ð12Þ

The derivation of angles between symmetry elements in a

cubic system is given in xA1.

Thus, symmetry visualized by Bravais lattices is also seen in

s.r.d. lattices via orthogonalities. Although arithmetic groups

depend on the basis selection, the space distribution of

orthogonalities is completely coordinate-free and represents

the whole lattice rather than its primitive cell.

5. Critical lattice deformations and derivative lattices

The treatment of lattice deformations in accordance with the

group–subgroup chain of resulting holohedries is facilitated by

selecting [UVW](HKL) and analysing possible deformations

of M, in such a way that the given orthogonality remains and

the lattice symmetry is unchanged or lowered. Assuming only

proper rotations, in all cases the final lattice group should be 2

or 32 depending on the dot product [UVW]�(HKL) (see Fig.

3). It will be adequate for our purpose to consider only a

homogeneous stretching or a compressive deformation of the

interplanar distance d(hkl). The resulting deformation tensor

"d(hkl) is symmetric and can be presented in the reduced form:

"dðhklÞ ¼ �M ¼ "ðhh; kk; ll; kl; hl; hkÞ: ð13Þ

A deformation which lowers the lattice symmetry is critical,

otherwise not. It is obvious that deformation "d(hkl) retains

orthogonalities (if any) with direction [uvw] perpendicular or

parallel to the (hkl) plane and destroys others. For a selected
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Figure 2
Primary (empty) and secondary (filled) symmetry points on the lattice
planes. The secondary symmetry points are seen in the conventional
planar unit mesh to be 1/2, 0 or 0, 1/2, or 1/2, 1/2 for a twofold symmetry
point, 2/3, 1/3 and 1/3, 2/3 for a threefold symmetry point, and 1/2, 1/2 for
a fourfold symmetry point.

Figure 3
Orthogonality types in s.r.d. Only one interpretation is presented:
symmetry axes are parallel to [uvw], basis vectors end in levels h; k; l of
the family of lattice planes (hkl). Sketches (a) and (b) show the splitting
indices, which correspond to the action of even-order and threefold
rotation axes, respectively.

3 Group ‘1/2’ should be added to this compilation if we also take into account
orthogonalities in Delaunay-reduced cells.



orthogonality [UVW](HKL) up to three critical deformations

can be constructed. This list is amended by scaling distortion,

which never is critical.

(a) Distortion pd(HKL). This vertical deformation can be

critical only for highest-symmetry lattices, where orthogonal-

ities inclined to the selected one may exist. Metrical rela-

tionships on plane (HKL) are not changed.

(b) Distortion qd(hkl). Horizontal distortion qd(hkl) is not

unique, but limited to twofold operations 2[uvw](hkl), where

ðhklÞ � ðUVWÞ = 0. It modifies the metrical relationships

between two orthogonal lattice vectors on the plane (HKL)

and is critical if the plane symmetry is changed.

(c) Distortion rd(h0k0l0). This horizontal deformation is

completely arbitrary, but still ðh0k0l0Þ � ðUVWÞ = 0. It destroys

all lattice orthogonalities in the plane (HKL).

(d) Distortion sM. This deformation proportionally changes

the lattice metric, not its symmetry.

Lattices obtained by the above distortions are derivative

according to highest-symmetry lattices in M.

Lemma. The symmetry of derivative lattices in s.r.d. covers

all arithmetic holohedries in V.

Proof. Arithmetic holohedries of maximal symmetry

lattices M 2M can be obtained and geometrically interpreted

by filtering matrices from V. Each orthogonality

[UVW](HKL) defines one (or a few) group–subgroup chain(s)

and corresponding deformations retaining this orthogonality.

Derivative lattices are still in s.r.d. and their successive metrics

are as follows:

M;

MðpÞ ¼ M þ pdðHKLÞ;

Mðp; qÞ ¼ MðpÞ þ qdðhklÞ

. . . All possible variants of twofolds

Mðp; q; rÞ ¼ Mðp; qÞ þ rdðh0k0 l0Þ;

Mðp; q; r; sÞ ¼ Mðp; q; rÞ þ sM:

Theoretically, all non-triclinic lattices in s.r.d. are describable

by the metric M from M. Thus, M(p; q; r; s) symbolizes all

derivative lattices, a specific M(p; q; r; s) characterizes the

given holohedry. An infinite number of three-dimensional

lattices with non-triclinic symmetry can be derived from a

finite number of highest-symmetry lattices by a well defined

procedure of breaking symmetry. Since deformations are

limited to changing interplanar distances, this formalism seems

to be helpful in X-ray powder diffraction analysis of structural

phase transitions (see illustrative xA2). &

6. Crystallographic space in semi-reduced description

The essence of the famous Erlangen program (Klein, 1872)

consists of a unified way of hierarchical classification of

geometries (spaces) based on the group–subgroup relations

between the corresponding groups of transformations, invar-

iant in given geometries. In particular, the projective geometry

is less restrictive than the affine geometry, which in turn is less

restrictive than the Euclidean geometry.

The crystallographic geometry, limited to the geometry and

symmetry of Bravais cells, is typically interpreted as a

special case of Euclidean geometry (Kopský, 2001), with the

individual treatment of the hexagonal system. Such an

elegant approach has many advantages: (i) the relation

between parameters of a Bravais cell and its symmetry is

obvious, (ii) the number of symmetry matrices is limited to 48

orthogonal matrices with integer elements (+ 16 non-ortho-

gonal matrices for the hexagonal system), (iii) symmetry

matrices are simple, only three matrix elements differ from

zero (four for the hexagonal system). This is the reason why

Bravais cells stand for a conventional space-group character-

ization and in consequence for a standardized crystal structure

description.

For many practical problems the crystallographic geometry

should be analysed in its own non-Cartesian systems. While

Bravais lattices can be relatively well described in a three-

dimensional Euclidean space, dealing with the symmetry of

reduced cells will be possible in the union of linear subspaces

of six-dimensional (or five-dimensional) parametric space.

Typically, such spaces are partial, restricted by the mathema-

tical reduction theory. Considerations presented in preceding

paragraphs showed a possibility of formally introducing a

more complete crystallographic space, limited by the lattice

geometry in s.r.d. This provides a better conceptual and

practical framework for dealing with the symmetry of reduced

lattices also in the presence of experimental errors or defor-

mations. The lattice geometry being more specialized in

comparison with the Euclidean geometry can be considered as

a separate item in the hierarchy of spaces with invariant linear

transformations (Table 2).
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Table 2
Hierarchy of spaces with invariant linear transformations: projective, affine, Euclidean and crystallographic [the latter is represented by semi-reduced
descriptions (s.r.d.)].

Legend: GL and O – general and orthogonal matrix groups with real (R) or integer (Z) elements, I – identity matrix.

Space Group element, W Linear transformation Invariant features

Projective space Det(W) = 0 Projection, non-reversible Cross ratio
Affine space – no metric W 2 GLð3;RÞ, det(W) 6¼ 0 Affine transformation + Linearity
Euclidean space – Euclidean metric, I W 2 Oð3;RÞ, det(W) = �1 Isometry + Distances
Crystallographic space (s.r.d.)

– derivative of 39 metric types
W 2 GLð3;ZÞ and Wk = I

960 W, det(W) = �1,Wij = {�1,0,1}
Crystallogaphic operation + Orthogonality; nine types



The properties of hierarchical spaces (projective, affine,

Euclidean) are discussed elsewhere. We recall here only

some features. A linear transformation in the projective space

reduces the dimension of that space and can retain the

ratio of ratios (cross ratio) on a line. Such transformations are

not invertible. The operations in the affine space are any

linear transformations that do not change the space dimen-

sion: W belongs to a general linear group GL(3, R). The

Euclidean space is an affine space equipped with the

Euclidean metric tensor M = I, where I denotes the identity

matrix. The Euclidean operations called isometries are

distance-preserving mappings and thus retain distances.

For the crystallographic space treated as a special type of

Euclidean space, additional requirements on W are needed.

Such an approach is applicable for lattice description by the

Bravais cells, with some problems involving the hexagonal

system.

In the crystallographic space the set of operations that map

any lattice onto itself in the orthogonal manner is a finite

subgroup of GL(3, Z). Finite subgroups contain elements W of

finite order k, Wk = I. In GL(3, Z) the k may only take values

1, 2, 3, 4, 6 and thus the ‘crystallographic restriction’ has a

natural origin. GL(3, Z) can be well represented by V in s.r.d.

approximation.

7. Isometries in the presence of experimental errors

Two aspects should be taken into account while deriving

the arithmetic holohedry from the biased data. At first,

the process is not algorithmic; mathematically, it can be

recognized as a Diophantine problem, computationally, as a

brute force approach, e.g. filtering of all potential solutions.

Secondly, there is no internal criterion to decide whether some

deviations from an isometric operation are essential for the

symmetry recognition or are accidental.

The filtering process (9) is extremely simple: only two

multiplications of matrices and comparison of the resulting

metric tensor with the original one for each V 2 V. Compar-

ison made on cell parameters (14) controls independently

deviations from isometric and isogonal transformations.

Moreover, the deviation � (Le Page, 1982) from orthogonality

between [uvw] and (hkl) can be monitored. Two filter para-

meters are introduced: tol1, allowable relative cell-length

changes given in per cent; and tol2, an allowable change of the

cell angles given in degrees of arc. The same numerical order

of both tolerances is assumed. Comparable cell parameters are

given by the following scheme:

a; b; c; �; �; � ! M! VTMV ¼ M0 ! a0; b0; c0; �0; �0; � 0:

ð14Þ

Finally, the filtering criterion is described by inequalities:

�a ¼ 100�max
a0 � aj j

a
;

b0 � bj j

b
;

c0 � cj j

c

� �
< tol1ð%Þ;

ð15Þ

�� ¼ maxð �0 � �
�� ��; �0 � ��� ��; � 0 � ��� ��; �Þ< tol2ð
Þ: ð16Þ

Both tolerances are symmetry thresholds for ranked isometric

and isogonal transformations. Their values are related to the

experimental standard deviations, but can be reduced to zero

for modelled strict symmetry data or enlarged for highly

corrupted data. Moreover, if we release tol2 and the filtering

procedure finds some additional matrices in V with high

angular discrepancies, it will be evident that the lattice also

reveals two-dimensional symmetry4 characteristic of multiple

Buerger-reduced cells. If tolerances are relatively high (e.g.

tol1 = tol2 = 3, see xA3 and Le Page arguments for selecting

such a high level) this measure is mathematically stable. Small

changes in the input cell parameters will result in modifica-

tions of discrepancies, but not in the list of filtered pseudo-

symmetry matrices and in consequence in the pseudo-

symmetry of the lattice. If max(�a) and max(��) may be

accepted by the experimental precision, the pseudo-symmetry

group represents the lattice symmetry. Any subgroup of such a

maximal group is also compatible with the given metric, like in

strict symmetry cases, but is less important for recognition of

the Bravais type (xA3).

Generally, the results of matrix filtration can be understood

as a complex geometric description of lattice isometries in the

presence of controlled experimental errors.

8. Semi-reduced lattice types

In sharp contrast to the uniqueness of lattice classification by

reduced cells, splitting semi-reduced lattices by their holohe-

dries is not lattice classification, but due to the completeness in

V it simplifies and stabilizes such a process. The distribution of

arithmetic holohedries along the Bravais types (Table 3) was

obtained by generating derivative lattices M(p; q; r). Some

results were confirmed by analysis of geometric interpretation

of matrices in V; among 126 fourfold operations 120 are

centred (= 60 tI groups). Similarly, centring takes place for 248
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Table 3
The distribution of arithmetic holohedries in s.r.d. along the Bravais types.

Type hP cP cF cI tP tI oP oA oI oF hR mP mC aP†

No 6 1 16 16 3 60 1 15 28 28 124 3 78 1

† Anorthic lattices are not considered in s.r.d. space.

4 In this context matrix V describes an isometric transformation limited to basis
vectors. It is not an orthogonal transformation; angles and other distances are
changed.



threefolds (= 124 hR groups) from the complete set of 260

items, 78 twofolds are centred (= 78 mC) and three are not (= 3

mP). This gives 379 primitive lattice types.

The number of semi-reduced types increases about nine

times in comparison with 44 Niggli characters, but criteria for

each type do not need to be given explicitly, since there is one-

to-one correspondence between an s.r.d. type and its

symmetry (individual arithmetic holohedry). Thus all levels of

lattice characterization are consistent and complete in V:

crystallographic systems – all geometric holohedries, Bravais

types – all geometric holohedries + all centring modes, s.r.d.

types – all arithmetic holohedries.

9. Discussion

About 75% of known crystalline materials belong to the non-

triclinic systems, which is many orders higher than the esti-

mation based on a random distribution of cell parameters.

However, symmetry (the possibility of equivalent lattice

descriptions) contrasts with the uniqueness of lattice defini-

tion. From the symmetry point of view the unique classifica-

tion of reduced lattice descriptions is an artificial step which in

the presence of experimental errors leads to unnecessary

mathematical instabilities. Alternative stable techniques,

based on a brute force strategy, can be effective if the set of

potential solutions is not considerable. Such a requirement

was fulfilled by the Le Page method, but innovative concepts

contained therein were not generally appreciated.5 The idea of

finding lattice symmetry by searching a spatial distribution of

all possible twofold axes (and thus lattice orthogonalities) was

extended in the present work to filtering possible symmetry

matrices according to the lattice metrics. This eliminates the

necessity of the arithmetic holohedry construction. The goal

was achieved – analysis of symmetry changes on the arithmetic

level, without relations to Niggli or conventional cells. More-

over, the simplicity of the filtration method seems to be an

interesting step in building a full computer program for

automatic Bravais-lattice selection from the experimental cell

with controlled standard errors, relatively simple in compar-

ison to the existing ones. Since similar lattices differ only by

small deformations, they must share the same pseudo-

symmetry, even if the strict lattice symmetries are lower. The

filtering procedure is resistant against extra two-dimensional

symmetries, which are not three-dimensional symmetries.

However, these two-dimensional symmetries lead to multiple

Buerger-reduced cells (Gruber, 1973) and complicate Niggli-

cell selection. Ranking of individual operations helps in

distinguishing between ‘random’ and ‘systematic’ lattice

distortions. For example, similar deviations caused by all

threefold operations cannot be interpreted as rhombohedral

distortion of a cubic cell, even if a hR lattice is usually reported

as possible symmetry in biased cubic cells. However, if it is

possible to split filtered operations into two separate parts (hR

group and the rest of the operations) by selecting appropriate

thresholds tol1 and tol2, the rhombohedral distortion cannot

be interpreted as accidental.

Splitting indices derived from the symmetry matrices in V

describe a complete set of orthogonalities. Potential ortho-

gonalities occurring in the semi-reduced lattice tensors can be

generated according to the orthogonality types and combi-

natorial rules. It is not surprising. In enumerative combina-

torics, many of the problems that arise in applications have

a relatively simple combinatorial description, if they are

‘complete’ relative to some requirements. Arithmetic holo-

hedries of reduced lattices do not constitute complete sets,

which is opposite to the proposed semi-reduced lattice

descriptions: V – all symmetry matrices with elements

{�1, 0, 1}, M – all maximal groups in V, M(p; q; r) – all s.r.d.

classes or all arithmetic holohedries in V. Completeness of the

semi-reduced lattice space reveals well its internal and

combinatorial structure and simplifies rather than complicates

relations between a lattice metric and the symmetry. Set M

may be obtained from the four representatives hP1, cP, cF1

and cF8. For V generation, only 11 symmetry matrices

are necessary. All three levels of lattice classifications are

complete and consistent in V: crystallographic systems – all

geometric fingerprints of holohedries, Bravais types – all

system holohedries + all centring modes, primitive lattice

types – all individual arithmetic holohedries. Since repre-

sentatives hP1, cP, cF1 and cF8 correspond to generators

selected by Hosoya (2000), for derivation of the unified group

of all the Bravais lattices G0, it is possible that some properties

of V can be explained in terms of this huge (2 799 360

elements) group.

Matrices V 2 V are natural extensions of 48 orthogonal

integer matrices and 16 orthogonal non-integer ones (hexa-

gonal system), if the equality V �1 = VT will be replaced by the

similarity operation V �1 = M �1VTM, where the symmetrical

positively defined matrix M gives the lattice context.

In the proposed crystallographic space the geometric

meaning of V, based on splitting indices, plays a fundamental

role. Dual symbols allow deduction of transformation to the

Bravais lattice, classification of arithmetic holohedries on the

absolute basis, classification of crystallographic orthogonal-

ities, analysis of the lattice deformations and estimation of the

length of an orthogonal conjugacy class. Moreover, splitting

indices give the lattice context of a symmetry operation or a

symmetry element, where they may be compared with the

concept of ‘geometric element’ (de Wolff et al., 1989). In the

case of space-group operations, it allows returning to the

earlier definition of symmetry elements based on cyclic

subgroups (Stróż, 2012).

10. Summary

By composing a few crystallographic concepts with partial

data concerning arithmetic holohedries into a complete

system, a more convenient framework to study symmetry

changes of deformable lattices was developed. It extends

obvious relationships between cell shapes, symmetry elements,

symmetry matrices and simple deformations, from the centred
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5 ‘The method seems only to be suited to Bravais lattices determination’
(Andrews & Bernstein, 1988).



Bravais lattices to a wide class of primitive lattices. A simple

filtering of well defined symmetry matrices according to the

biased experimental metric leads to a rich and mathematically

stable characterization of a lattice in the form of ranked

deviations from the orthogonalities, isometric and isogonal

transformations. Metrical symmetry corresponds to the

maximal arithmetic group of pseudo-symmetries allowed by

estimated or assumed tolerances: tol1, tol2. Geometric inter-

pretation of filtered matrices defines transition to the Bravais

cell. All subgroups of the pseudo-symmetry group are

consistent with given lattice data, but the most important are

subgroups obtainable by limiting tol1 and tol2. In the presence

of experimental errors, filtering of symmetry matrices avoids

missing important candidates for the lattice types, without

excessively producing all mathematically possible lattices with

lower symmetries.

‘Lattice similarities’ is rather a side problem in the scope of

this work, but very important for practical crystallography and

database searching. In the presented approach the similar

lattices are such lattices that share the pseudo-symmetry

lattice type and reveal similar Bravais cell parameters (both in

given limits tol1, tol2). Preliminary comparison of this

criterion with the distance measure based on careful analysis

of the Niggli reduction boundaries (Andrews & Bernstein,

2014) was promising. Extensive comparison of such different

concepts should be interesting and valuable.

It is clear that the numbers of different objects (symmetry

matrices, directions, elements etc.) related to lattices in s.r.d.

are higher than the numbers of analogous objects related to

strictly reduced lattices, but completeness of the semi-reduced

lattice space reveals its combinatorial structure, which is

eminently more suitable for computer applications than

restrictive rules specific rather for the reduction process than

for lattices themselves. It can be finally concluded that there

are excellent theoretical and practical reasons (including

stability, simple mathematics and algorithms) for looking at

the strict or distorted crystal lattice symmetry from an entirely

new and surprising point of view – the combinatorial set V of

matrices, their semi-reduced lattice context and their

geometric properties.

APPENDIX A
A1. Example 1. Geometric fingerprints of holohedries

All conjugate arithmetic holohedries and the corresponding

geometric holohedry share the same geometric fingerprint –

the space distribution of symmetry axes. For derivation of

interaxial angles we do not need metrical information, but

only dual indices (10).

Let us enumerate symmetry elements of the F-centred cubic

lattice in cF5 description: 1: 4[112](001), 2: 4[110](110), 3:

4(110)[111], 4: 3[112](011), 5: 3[132](010), 6: 3[112](101), 7:

3[312](100), 8: [011](111), 9: [001](112), 10: [010](021), 11:

[101](111), 12: [111](110) and 13: [100](201). Twofold axis

symbols are omitted from items in the list. The space distri-

bution of symmetry elements, according to the given

numbering, is compiled in Table 4.

The same results, up to ordering schema, can be obtained

for the rest of the 32 holohedries of cubic lattices described in

Table 1. Similarly, six holohedries corresponding to the lattice

metrics hP1–hP6 gave the space distribution of symmetry

elements characteristic for the hexagonal system. Thus, all

matrices in V (excluding only the identity matrix) are involved

with two geometric structures.

A2. Example 2. Modelling of the S-phase cell

The hardness and the wear resistance of austenitic stainless

steel are improved by a surface treatment. Special nitriding

processes lead to super-saturated layers (S-phase); the

formation, structure and dependence on the nitrogen amount

are still not fully understood (Fewell et al., 2000).

X-ray powder diffraction experiments (Fig. 4) showed an

apparent contradiction between a non-homogeneous reflec-

tion shift (breaking symmetry) and the lack of splitting

diffraction lines characteristic for such cases. This caused

problems in an automatic cell derivation. Since the unit cell

expands and the smallest deformation occurs for (111) inter-

planar spacings, the S-phase metric can be modelled by

MS-phase ¼ Maustenite þ sMaustenite þ pð1; 1; 1; 1; 1; 1Þ:
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Table 4
Space distribution of symmetry axes in the cubic system.

Interaxial angles were derived from the arithmetic holohedry itself, without any metrical data.

2 3 4 5 6 7 8 9 10 11 12 13

1 90 90 54.74 54.74 54.74 54.74 45 45 90 45 45 90
2 90 54.74 54.74 54.74 54.74 45 90 45 45 90 45
3 54.74 54.74 54.74 54.74 90 45 45 90 45 45
4 70.53 70.53 70.53 90 35.26 35.26 35.26 90 90
5 70.53 70.53 35.26 90 35.26 90 35.26 90
6 70.53 35.26 35.26 90 90 90 35.26
7 90 90 90 35.26 35.26 35.26
8 60 60 90 60 60
9 60 60 90 60
10 60 60 90
11 60 60
12 60



Parameters p and s estimated by the least-square method

explain the behaviour of S-phase reflections (Table 5). The

lack of splitting lines can be easily explained by the texture:

the deformation occurs only in the [111] direction closest to

the direction of nitrogen impacts, normal to the sample

surface.

A3. Example 3. Bravais-lattice determination from the
arithmetic holohedries

A semi-reduced cell is given by the parameters a = 4.000, b =

4.472, c = 4.583 Å, � = 79.030, � = 64.130, � = 64.150
 (Le Page,

1982). High thresholds (tol1 = 3%, tol2 = 3
) were selected for

filtering matrices (Table 6).

The estimated holohedry corresponds to the lattice type tI.

If the cell parameters are measured with higher precision

estimated by tol1 = 1 and tol2 = 1.5, only the first four rows

describe the symmetry operations and the holohedry is oF. If

we know that the lattice metric was obtained by very precise

measurements (modelled by tol1, tol2 = 0.01), the real

symmetry cannot be higher than mC. These maximal

symmetries are ‘suggested’ by deviations �a, ��, �. Of course,

other subgroups of tI are consistent with the given lattice data,

but are less important for selection of the Bravais cell, that is

the cell that corresponds to the highest lattice symmetry in

known or assumed error limits.

The above results agree with the output of Le Page’s

program from 1982. Comparison with ‘metrical’ programs

should be preceded by analysis of the cut-off criteria of both

approaches. As an ad hoc solution of this problem, ‘metrical’

results may be checked for accordance with selected symmetry

tolerances. Such exemplary data are collected in Table 7.

The filtering procedure for Niggli-reduced cells from Table

7 reveals symmetry described in the last column for tol1, tol2

’ 0. But all lattices in ranges tol1, tol2 = 3 show tI pseudo-

symmetry, in contrast to other Bravais lattices rejected by this

ad hoc rule. The pseudo-symmetry and the exact symmetry are

in a group–subgroup relation. Such ‘structural transitions’ can

be modelled by deforming the lattice with strict tI symmetry.

For example, one can obtain an mC lattice (3.986, 8.1591,

4.528, 90, 116.039, 90), the Niggli-reduced form of which

reveals a 2 [102] (001) symmetry operation and tI pseudo-

symmetry. Such a lattice is closer to experimental data in

comparison with the lattice (4.123, 8.186, 4.243, 90, 116.481,

90) obtained by BGAOL but not included in Table 7, since it

reveals mC symmetry; however, it does not reveal tetragonal

pseudo-symmetry for given tolerances.

It is clear from the above comparison that pseudo-

symmetry is a valuable measure of similarities between

lattices, even in the vicinity of 90
 angles. In the presence of

experimental errors, filtering of symmetry matrices V avoids

missing important candidates for the lattice types, without

excessively producing all mathematically possible lattices with

lower symmetry.
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Kopský, V. (2001). Advances in Structure Analysis, edited by R.
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Table 7
Bravais items from BGAOL output (http://iterate.sf.net/bgaol), which
corresponds to pseudo-symmetry tI for tolerances tol1, tol2 = 3.

a b c � � � Symmetry

5.752 5.752 3.981 90 90 90 tI
8.009 8.257 3.981 90 90 90 oF
3.983 5.739 5.762 90 90 90 oI
6.986 5.762 4 90 124.427 90 mC
4 8.247 4.472 90 115.852 90 mC
3.975 8.012 4.583 90 115.907 90 mC
5.762 3.983 5.739 90 91.742 90 mI
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